TOP 통신 매뉴얼

(Siemens S5/S7 시리즈)

Published by M2I Corporation

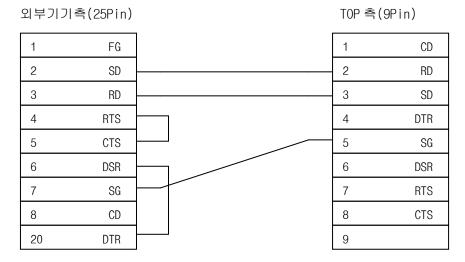
< 개정 이력 >

No.	개정 일자	개정 이력	Rev.	비고
1	2003-11-03	CP441 RS-422 결선도 추가	Α	
2	2006-05-27	CP341 설정 예제 추가	В	
3	2007-01-04	CP341 232C 결선도 수정	С	
4	2007-02-05	CP341/441 RS-422 결선도 수정	D	
5	2007-03-26	CP340(통신불가) 삭제	Е	
6	2007-04-24	S7300 MPI 통신 DB 자리수 변경	F	
7	2007-09-06	MPI시 Highest Node 설명 추가	G	
8	2007-11-07	PPI시 결선도에서 SG 제거	Н	
9	2008-01-24	CP341 485 결선도 수정		
10	2008-03-21	MPI Direct 추가	J	

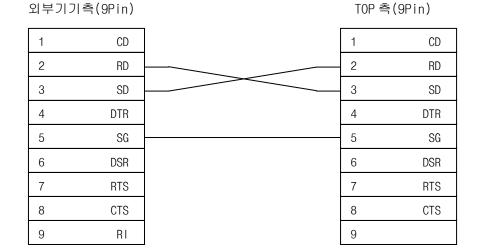
Siemens S5/S7 시리즈

S5/S7 시리얼 인터페이스

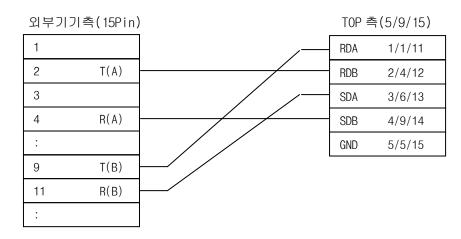
Siemens S5/S7 시리즈와 링크 유닛을 통해 시리얼 인터페이스로 통신하는 방법을 알아봅니다.

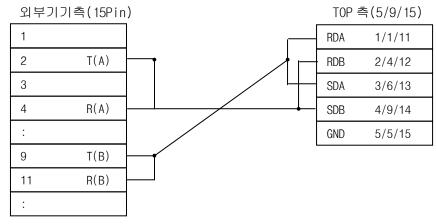

< 시스템 구성 >

본 기기와 S5/S7 PLC를 연결하는 경우의 시스템 구성을 나타냅니다.


외부기기	통신 유닛	케이블	TOP
		← →	ТОР
S5 90U			
S5 95U			
S5 100U		결선도 참조	
S5 115U	CP525		TOD 뭐기조
S5 135U		(RS-232C /	TOP 전기종
S5 155U		RS-422)	
S7-300	CP341		
S7-400	CP441-2		

< 케이블 결선 >


(1)RS-232C 결선도(CP525 ↔ TOP 시리즈)

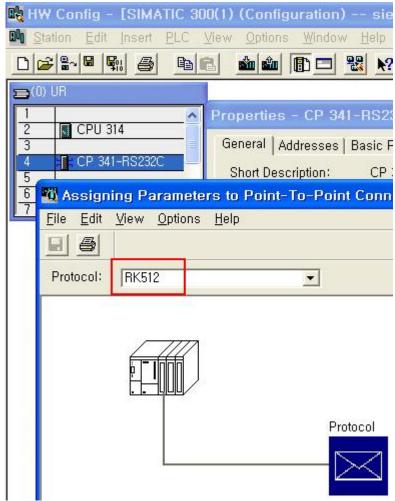

(2)RS-232C 결선도(CP341, CP441-2 ↔ TOP 시리즈)

(3) RS-422 결선도(CP341, CP441-2 ↔ TOP 시리즈)

(4) RS-485 결선도(CP341, CP441-2 ↔ TOP 시리즈)

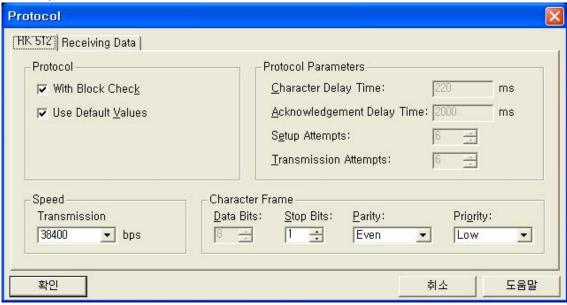
- ※ 9PIN DSUB의 TOP 422 결선은 (1,4,6,9,5)입니다.
- ※ 15PIN DSUB의 TOP 422 결선은 (11,12,13,14,15)입니다.

< CP525/CP341/ CP441-2 설정 >

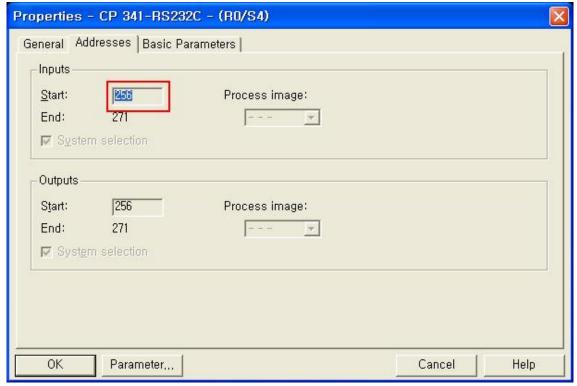

PLC 측 설정		
전송속도	110 bps ~ 76800 bps	
Data 길이	8 bit	
스톱비트	1 bit	
패리티 비트	EVEN	
Error Detection	BCC(SUM)	
Priority	Low	

S7 에서는 Protocol을 RK-512를 선택해야하고, S5 에서는 Protocol을 3964R로 선택해야 합니다. 또한 Function Block 중 Receive Function Block FB7을 추가 해야 합니다.

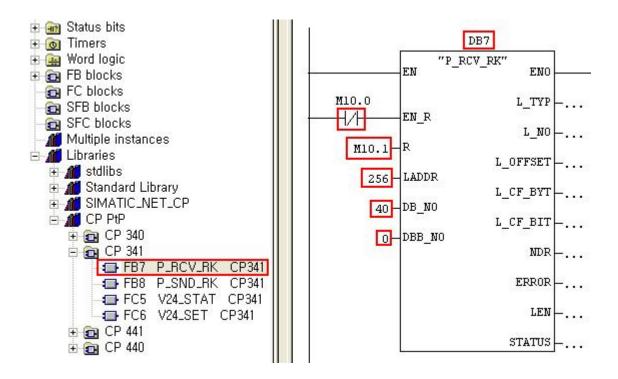
PC 소프트웨어 최신 버전에서 CP340은 지원되지 않습니다.


< CPU314, CP341 RS232C 로 구성한 예제 >

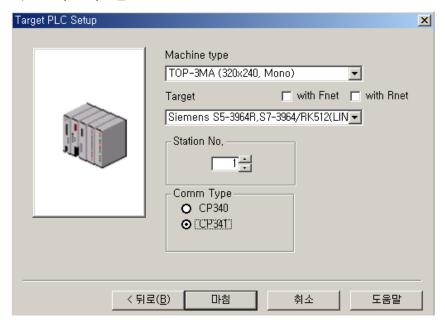
S7 에서는 Protocol을 RK512로 지정합니다.



통신 파라미터들을 설정합니다.


Priority 는 Low 로 설정합니다.

이 후에 FB7을 구성할 때 "LADDR"에 사용될 주소값을 확인해 둡니다.



OB1 을 열고 Program Element 중에서 CP341 에서 "FB7 P_RCV_RK CP341"을 끌어다 놓습니다. 맨 위에는 FB7 이 통신 수신을 위해 사용하게 될 DB 번호(DB7)를 적어둡니다. 그러면 해당 DB가 자동으로 생성됩니다. 'EN_R'을 ON으로 하셔야 통신이 가능합니다. R은 리셋입력이고 LADDR은 위에서 확인한 address 값입니다. DB_NO는 사용할 DB들 중에서 하나를 적습니다. DB 안에서 할당을 해 준 영역만 통신으로 읽고 쓸 수 있습니다.

(1) TOP Designer 에서의 설정

외부기기 기종 중에서 "Siemens Series"중 "Simens S5-3964R, S7-3964/RK512(Link)"를 선택합니다.

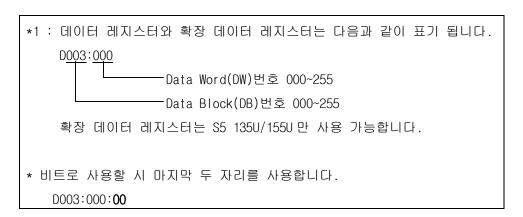
(2) 시리얼 설정

추천하는 설정 내용은 다음과 같습니다.

시리얼 보우레이트 : 38400 bps

시리얼 데이터비트 : 8bit

시리얼 정지비트: 1bit


시리얼 패리티비트 : EVEN 시리얼 신호레벨 : RS-232

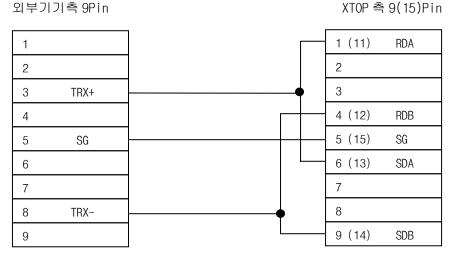
통신진단시 상대 국번(0~31) : 관계 없음

< 설정 가능 어드레스 일람 >

디바이스	워드 어드레스	
데이터 레지스터 * ¹	D002:000 ~ D255:255	
확장 데이터 레지스터 * ¹	X002:000 ~ X255:255	

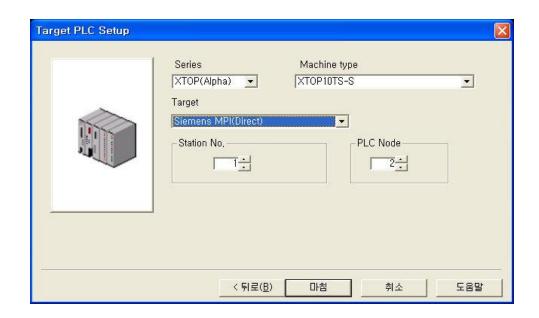
S7-300/400 (CPU MPI Direct 1:1 통신)

Siemens S7-300/400 의 CPU의 MPI 포트에 직접 연결하여 1:1통신하는 방법을 알아봅니다. ※ 1:1 통신만을 지원합니다. CPU 외의 MPI Address 를 할당 받는 카드(Ethernet card, Profibus card)가 장착되어 있을 시 XTOP 와 통신이 되지 않습니다. 단 I/O 카드들은 MPI Address 를 할당 받지 않습니다. XTOP 통신과 동시에 MPI 포트로 PC 모니터링도 불가능합니다.


< 시스템 구성 >

본 기기와 S7 PLC를 연결하는 경우의 시스템 구성을 나타냅니다.

외부기기	통신 유닛	케이블	TOP
			XTOP
CPU3121FM			
CPU313			
CPU314			
CPU3141FM	CPU MPI 포트	결선도 참조	XTOP에 한함
CPU315		(RS-485)	(ATOP 미지원)
CPU315-2DP			
CPU316			
CPU316-2DP			


< 케이블 결선 >

(1)RS-485 결선도(CPU MPI 포트 ↔ TOP 시리즈)

(1)TOP Designer 에서의 설정

외부기기 기종 중에서 "Siemens Series" 중 "Siemens MPI Direct"를 선택합니다. Station No.에는 TOP의 MPI Address를, PLC Node 에는 S7의 MPI Address를 설정합니다.

(2) TOP 에서의 설정

추천하는 설정 내용은 다음과 같습니다.

시리얼 보우레이트 : 187500 bps

시리얼 데이터비트: 8bit(자동설정)

시리얼 정지비트: 1bit(자동설정)

시리얼 패리티비트 : Even(자동설정)

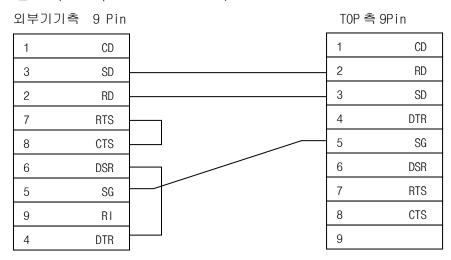
시리얼 신호레벨 : RS-485

통신진단시 상대 국번(0~31) : 관계 없음

- ※ PLC에서 Highest Address 를 15로 설정하면 통신접속이 더 빠릅니다.
- ※ 1:N 통신이나 N:1 통신은 지원하지 않습니다.
- ※ 하나의 포트에서 MPI/DP 를 모두 지원하는 CPU 는 MPI 와 ProfiBus 둘 중에서 한 가지만 사용할 수 있습니다.
- ※ MPI Direct 는 XTOP에서만 지원됩니다.

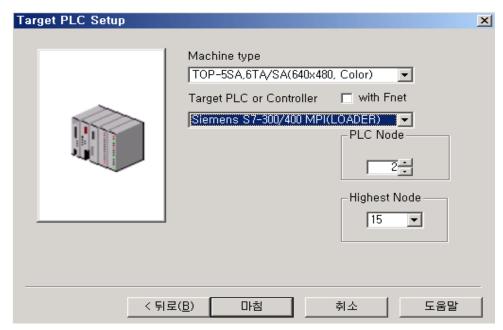
S7-300/400 (CPU의 MPI + PC adapter)

Siemens S7-300/400 과 PC 어댑터를 통해 시리얼 인터페이스로 통신하는 방법을 알아봅니다.


< 시스템 구성 >

본 기기와 S7 PLC를 연결하는 경우의 시스템 구성을 나타냅니다.

외부기기	통신 유닛	케이블	TOP
		←	TOP
CPU3121FM			
CPU313			
CPU314			
CPU3141FM	DC Adoptor	결선도 참조	TOP 전기종
CPU315	PC Adapter	(RS-232C)	[107 선기중
CPU315-2DP			
CPU316			
CPU316-2DP			


< 케이블 결선 >

(1)RS-232C 결선도(PC Adapter ↔ TOP 시리즈)

(1)TOP Designer 에서의 설정

외부기기 기종 중에서 "Siemens Series"중 "Siemens S7-300/400 MPI(LOADER)"를 선택합니다.

※ Highest Node Address 는 MPI 네트워크 설정시 선택하게 됩니다.(13 페이지 참조)

(2) TOP 에서의 설정

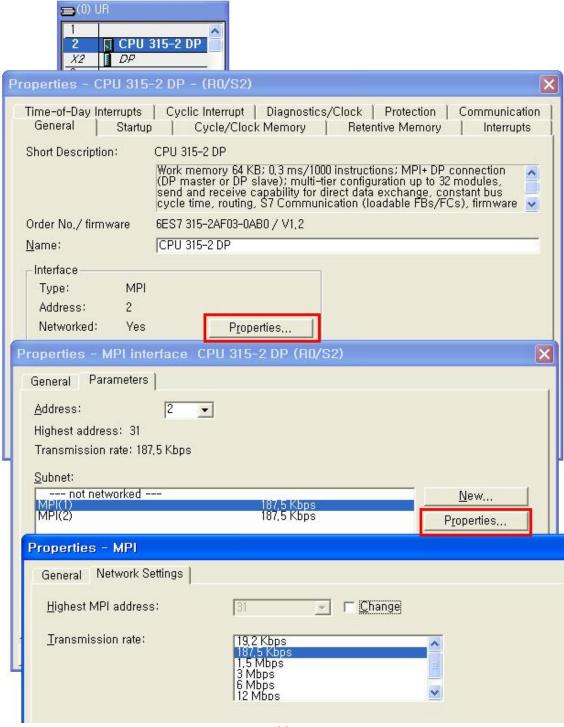
추천하는 설정 내용은 다음과 같습니다.

시리얼 보우레이트 : 19200, 38400 bps

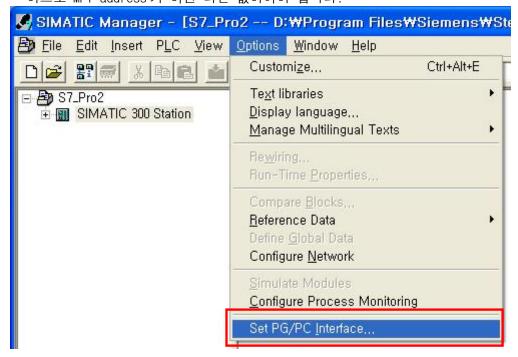
시리얼 데이터비트 : 8bit

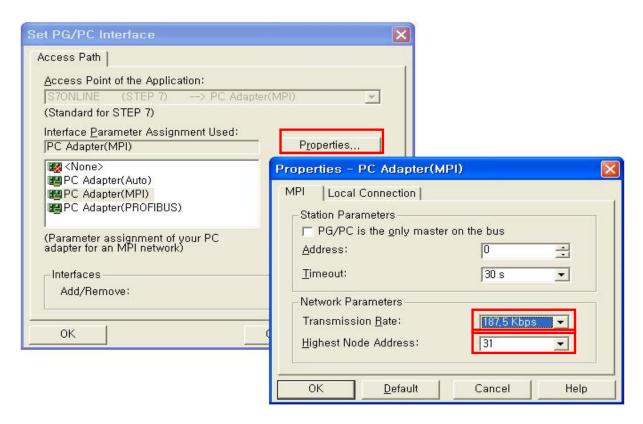
시리얼 정지비트: 1bit

시리얼 패리티비트 : ODD


시리얼 신호레벨 : RS-232C

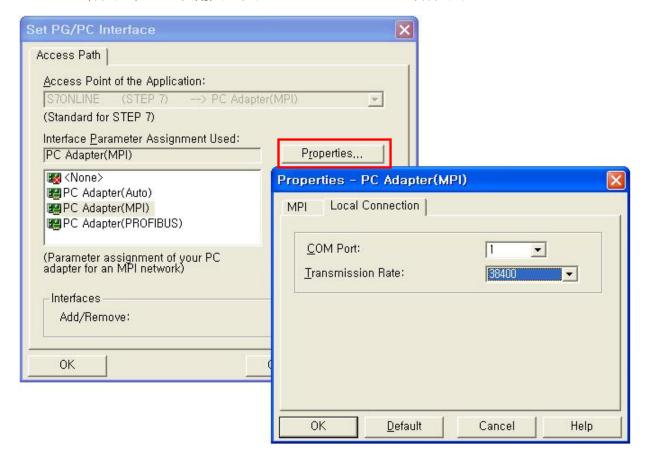
통신진단시 상대 국번(0~31) : 0 번


< S7-300/400 CPU 설정 >


(1) Hardware Config

다음 그림과 같이 MPI interface 의 Network Setting 탭에서 Transmission rate 를 187.5Kbps 로 맞춥니다. Highest Address 는 15 로 변경하면 최초 통신접속이 빨리 됩니다

(2) Options > Set PG/PC Interface > PC Adapter >MPI 그림과 같이 Transmission Rate 를 187.5 Kbps 로 맞춥니다. Address 는 PC 의 address 이므로 MPI address 가 아닌 다른 값이어야 합니다.



※ PC Adapter 를 사용할 경우, 위 Highest Node Address 를 TOP 디자이너에서 입력해 주셔

야 합니다. (디자이너의 프로젝트 정보)

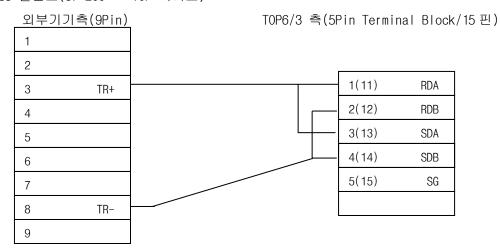
(3) Options > Set PG/PC Interface > PC Adapter > Local Connection
PC Adapter 를 사용할 경우, Local Connection 은 PC 또는 TOP 와 통신하는 속도이므로
PC 어댑터 측면 스위치값에 따라 19200 또는 38400 으로 맞춥니다.

(4) TOP 메뉴

TOP 메뉴에서는 보우레이트만 PC Adaptor 의 스위치값에 따라 19200 또는 38400 으로 맞춥니다. 나머지 데이터비트 등의 값은 자동적으로 설정됩니다.

S7-200 (CPU 직결 PPI 포트사용)

Siemens S7-200과 시리얼 인터페이스로 통신하는 방법을 알아봅니다.

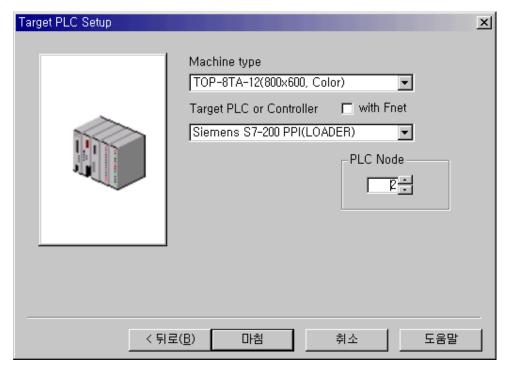

< 시스템 구성 >

본 기기와 S7 PLC를 연결하는 경우의 시스템 구성을 나타냅니다.

외부기기	통신 유닛	케이블	TOP
			ТОР
S7-200 (CPU212/214/ 222/224/226)	없	결선도 참조 (RS-485)	TOP 전기종

< 케이블 결선 >

(1)RS-485 결선도(S7-200 ↔ TOP 시리즈)


< S7-200CPU 설정 >

PLC 측 설정		
전송속도	9600 bps	
Data 길이	8 bit	
스톱비트	1 bit	
패리티 비트	EVEN	
Error Detection	BCC(SUM)	

국번은 디폴트(2번)으로 둔다.

(1)TOP Designer 에서의 설정

외부기기 기종 중에서 "Siemens Series" 중 "Siemens S7-200 PPI(Loader)"를 선택합니다.

(2) TOP 에서의 설정

추천하는 설정 내용은 다음과 같습니다.

시리얼 보우레이트 : 9600 bps

시리얼 데이터비트 : 8bit

시리얼 정지비트: 1bit

시리얼 패리티비트 : EVEN

시리얼 신호레벨 : RS-485

통신진단시 상대 국번(0~31) : 2번(상관없음)

< 설정 가능 어드레스 일람 >

(1) S7-300 CPU 직결(MPI Port)

디바이스	비트 어드레스	워드 어드레스
입력 릴레이 E(I)	E(I)00 000~E(I)127 07	EW(IW)000~EW(IW)126
출력 릴레이 A(Q)	A(Q)00 000~A(Q)127 07	AW(QW)000~AW(QW)126
타이머		※ T000 ∼ T127
카운터		
데이터블럭	DB 001 00000 00 ~	DB 001 00000 ~
	DB 256 65535 07	DB 256 65534
메모리	M255 07	MW000 ~MW254

- ※ DB 영역을 '실수'로 읽고자 할 경우 디자이너에서 'FB'를, M 영역을 '실수'로 읽고자 할 경우에는 'FM'을 선택합니다. 실수영역은 주소가 4 씩 증가하므로 0, 4, 8…과 같이 입력하셔야 합니다. 실수영역은 "32bit 워드스왑"을 선택하지 않고 32bit 정수일 경우만 "32bit 워드스왑"을 선택합니다.
- ※ 실수를 사용할 때 하나의 주소는 모든 화면에서 소수점 자리수가 일치해야 합니다. 예를 들어 2 개의 화면에 각각 숫자 태그를 FM000 으로 등록하고 첫 번째 화면에는 소수점 1 자리로, 두 번째 화면에는 소수점 2 자리로 하면 안됩니다. 주소가 다를 경우는 소수점 자리수가 같지 않아도 됩니다.

*1 : 데이터 레지스터는 다음과 같이 표기 됩니다.

DB 034 00002

Word 주소: 00000 ~ 65534(짝수로 지정해야함)

Data Block(DB)번호: 001 ~ 256

* 비트로 사용할 시 하위 2 자리가 추가됩니다.

DB 034 00002 00

비트주소: 00 ~ 07

※ 타이머와 카운터는 태그 설정을 BCD로 지정 하여야 합니다.

<주의>

만약 DB34 안에서 WORD 타입으로 ARRAY를 할당한 경우, 첫 번째 영역은 주소가 0과 1, 두 번째 영역은 주소가 2와 3, 세 번째 영역은 4와 5가 할당됩니다. 숫자태그나 키표시태그로 두 번째 영역을 워드값으로 읽어오기 위해서는 TOP 에

서 디바이스 주소를 2로 지정해야 합니다. (DB 034 00002).

램프태그나 터치태그와 같이 비트를 접근할 경우, 두 번째 영역의 상위 바이트를 접근하기 위해서는 주소를 2, 하위 바이트를 접근하기 위해서는 주소를 3 으로 지정합니다.

두 번째 영역의 상위 바이트 00 비트 접근: DB 034 00002 00 두 번째 영역의 하위 바이트 00 비트 접근: DB 034 00003 00

마지막 두 자리 00 는 비트 위치를 나타내고 00~07 까지 지정 가능합니다. DB 034 00002 00 을 0N시키고 DB 034 00002를 숫자태그(워드)로 읽어보면 256 이 표시됩니다.

32 비트 정수를 표시하기 위해서는 '32 비트'와 '32 비트 워드스왑'을 체크합니다.

(2) S7-200

디바이스	비트 어드레스	워드 어드레스
입력 릴레이	100 ~ 177	IWO ~ IW6
출력 릴레이	Q00 ~ Q77	QWO ~ QW6
타이머	T000 ~ T127	TW000 ~ TW127
카운터	C00 ~ C63	CW000 ~ CW127
가변 메모리	V000 ~ V4095	VW0000 ~ VW4094
메모리	M000 ~ M317	MWOO ~MW30
특수 메모리	SM000 ~ SM857	SMWO ~ SMW84
아날로그 입력		AIWO ~ AIW30
아날로그 출력		AQWO ~ AQW3O
고속 카운팅		HCO ~ HC2