SCHNEIDER Electric Industries SCHNEIDER MODBUS Master Series MODBUS Serial Master Driver

Supported version

TOP Design Studio

V1.0 or higher

CONTENTS

We want to thank our customers who use the Touch Operation Panel.

1. System configuration

Page 2

Describes the devices required for connection, the setting of each device, cables, and configurable systems.

2. External device selection

Page 3

Select a TOP model and an external device.

3. TOP communication setting

Page 4

Describes how to set the TOP communication.

4. External device setting

Page 9

Describes how to set up communication for external devices.

5. Cable table

Page 10

Describes the cable specifications required for connection.

6. Supported addresses

Page 12

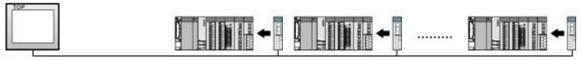
Refer to this section to check the addresses which can communicate with an external device.

1. System configuration

This driver is the "Serial Master Driver" among the "MODBUS Protocol" of "MODBUS Organization".

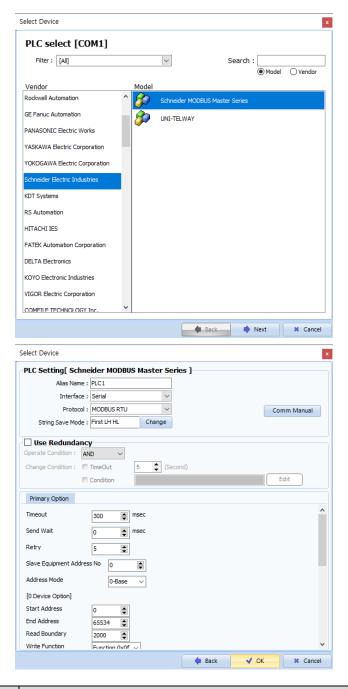
Depending on the external device (MODBUS Slave Protocol supported), you may set the "command code", "protocol frame format" etc., of the driver separately. In this case, set the detailed settings according to the external device side based on the communication method.

The system configuration with an external device supported by this driver is as follows:


Series	CPU Link I/F		Communication method	System setting	Cable
		RS-232C	3. TOP communication		
MODBUS Slave Device			RS-422 (4 wire)	setting 4. External device	5. Cable table
			RS-485 (2 wire)	setting	

■ Connectable configuration

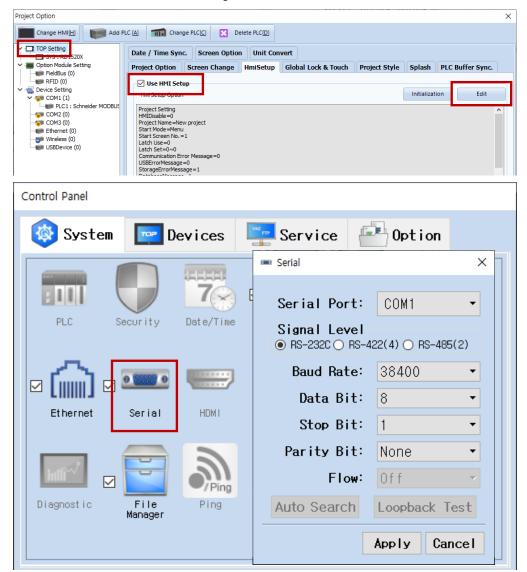
• 1:1 (one TOP and one external device) connection – configuration which is possible in RS232C/422/485 communication.


• 1:N (one TOP and multiple external devices) connection – configuration which is possible in RS422/485 communication.

2. External device selection

■ Select a TOP model and a port, and then select an external device.

Settings		Contents					
TOP	Model	Check the TOP display and process to select the touch model.					
External device	Vendor	Select the vendor of the external device to be connected to TOP. Select "Schneider Electric Industries".					
	PLC	Select an external device to connect to T					
		Model	Inter	face	Protocol		
		Schneider MODBUS Master Series	Serial		Set Users		
		Supported Protocol					
		MODBUS RTU	MODBUS ASCII	DBUS ASCII			
		Please check the system configuration in Chapter 1 to see if the external device you					
		connect is a model whose system can be	e config	ured.			


3. TOP communication setting

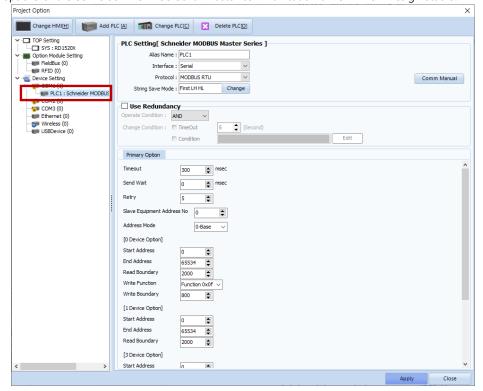
The communication can be set in TOP Design Studio or TOP main menu. The communication should be set in the same way as that of the external device.

3.1 Communication setting in TOP Design Studio

(1) Communication interface setting

- [Project > Project Property > TOP Setting] → [Project Option > "Use HMI Setup" Check > Edit > Serial]
 - Set the TOP communication interface in TOP Design Studio.

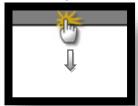
Items	ТОР	External device	Remarks			
Circuit Level (next)	RS-232C	RS-232C				
Signal Level (port)	RS-422/485	RS-422/485				
Baud Rate	38400					
Data Bit		3				
Stop Bit	1					
Parity Bit	None.					


^{*} The above settings are examples recommended by the company.

Items	Description				
Signal Level	Select the serial communication method between the TOP and an external device.				
Baud Rate	Select the serial communication speed between the TOP and an external device.				
Data Bit	Select the serial communication data bit between the TOP and an external device.				
Stop Bit	Select the serial communication stop bit between the TOP and an external device.				
Parity Bit	Select the serial communication parity bit check method between the TOP and an external device.				

(2) Communication option setting

- [Project > Project Property > Device Setting > COM > "PLC1 : Schneider MODBUS Master Series"]
 - Set the options of the Schneider MODBUS Serial Master communication driver in TOP Design Studio.



Items	Settings	Remarks	
Interface	Select "Serial".	Refer to "2. External	
Protocol	Select the communication protocol between the TOP and an external device.	device selection".	
TimeOut (ms)	Set the time for the TOP to wait for a response from an external device.		
Cand\Mait (ms)	Set the waiting time between TOP's receiving a response from an external device and		
SendWait (ms)	sending the next command request.		
Slave Equipment	Enter the prefix number of an external device (Slave).		
Address No			
Address Mode	Select the Address Mode. (1-base: "address-1" operation/0-base: no operation)		
[0 Device Option]			
Start Address	Enter the Start Address of the Coil.		
End Address	Enter the End Address of the Coil.		
Read Boundary	Set the maximum number of consecutive reads for the Coil.		
Write Function	Set the write command for the Coil.		
write runction	Force Single Coil: 05(Hex) / Force Multiple Coils: 0F(Hex)		
Write Boundary	Set the maximum number of consecutive writes for the Coil.		
[1 Device Option]			
Start Address	Enter the Start Address of the Discrete Input.		
End Address	Enter the End Address of the Discrete Input.		
Read Boundary	Set the maximum number of consecutive reads for the Discrete Input.		
[3 Device Option]			
Start Address	Enter the Start Address of the Input Register.		
End Address	Enter the End Address of the Input Register.		
Read Boundary	Set the maximum number of consecutive reads for the Input Register.		
[4 Device Option]			
Start Address	Enter the Start Address of the Holding Register.		
End Address	Enter the End Address of the Holding Register.		
Read Boundary	Set the maximum number of consecutive reads for the Holding Register.		
Write Function	Set the write command for the Holding Register.		
Write Function	Preset Single Register : 06(Hex) / Preset Multiple Registers : 10(Hex)		
Write Boundary	Set the maximum number of consecutive writes for the Holding Register.		

3.2. Communication setting in TOP

- * This is a setting method when "Use HMI Setup" in the setting items in "3.1 TOP Design Studio" is not checked.
- Touch the top of the TOP screen and drag it down. Touch "EXIT" in the pop-up window to go to the main screen.

(1) Communication interface setting

■ [Main Screen > Control Panel > Serial]

Items	ТОР	External device	Remarks
Cinnal Laval (naut)	RS-232C	RS-232C	
Signal Level (port)	RS-422/485	RS-422/485	
Baud Rate	38-	400	
Data Bit	1	3	
Stop Bit			
Parity Bit	No	ne.	

 $^{^{\}star}$ The above settings are setting $\underline{\text{examples}}$ recommended by the company.

Items	Description
Signal Level	Select the serial communication method between the TOP and an external device.
Baud Rate	Select the serial communication speed between the TOP and an external device.
Data Bit	Select the serial communication data bit between the TOP and an external device.
Stop Bit	Select the serial communication stop bit between the TOP and an external device.
Parity Bit	Select the serial communication parity bit check method between the TOP and an external device.

(2) Communication option setting

■ [Main Screen > Control Panel > PLC]

Items	Settings	Remarks
Interface	Select "Serial".	Refer to "2. External
Protocol	Select the communication protocol between the TOP and an external device.	device selection".
TimeOut (ms)	Set the time for the TOP to wait for a response from an external device.	
Cond Mait (ms)	Set the waiting time between TOP's receiving a response from an external	
SendWait (ms)	device and sending the next command request.	
Slave Equipment Address No	Enter the prefix number of an external device (Slave).	
Address Mode	Select the Address Mode. (1-base: "address-1" operation/0-base: no	
	operation)	
[0 Device Option]		
Start Address	Enter the Start Address of the Coil.	
End Address	Enter the End Address of the Coil.	
Read Boundary	Set the maximum number of consecutive reads for the Coil.	
Write Function	Set the write command for the Coil.	
write function	Force Single Coil: 05(Hex) / Force Multiple Coils: 0F(Hex)	
Write Boundary	Set the maximum number of consecutive writes for the Coil.	
[1 Device Option]		
Start Address	Enter the Start Address of the Discrete Input.	
End Address	Enter the End Address of the Discrete Input.	
Read Boundary	Set the maximum number of consecutive reads for the Discrete Input.	
[3 Device Option]		
Start Address	Enter the Start Address of the Input Register.	
End Address	Enter the End Address of the Input Register.	
Read Boundary	Set the maximum number of consecutive reads for the Input Register.	
[4 Device Option]		
Start Address	Enter the Start Address of the Holding Register.	
End Address	Enter the End Address of the Holding Register.	
Read Boundary	ead Boundary Set the maximum number of consecutive reads for the Holding Register.	
Write Function	Set the write command for the Holding Register.	
write runction	Preset Single Register : 06(Hex) / Preset Multiple Registers : 10(Hex)	

Set the maximum number of consecutive writes for the Holding Register.

3.3 Communication diagnostics

- Check the interface setting status between the TOP and external device.
- Touch the top of the TOP screen and drag it down. Touch "EXIT" in the pop-up window to go to the main screen.
- Check if the COM port settings you want to use in [Control Panel > Serial] are the same as those of the external device.
- Diagnosis of whether the port communication is normal or not
- Touch "Communication diagnostics" in [Control Panel > PLC].
- The Diagnostics dialog box pops up on the screen and determines the diagnostic status.

ОК	Communication setting normal
Time Out Error	Communication setting abnormal
	- Check the cable, TOP, and external device setting status. (Reference: Communication diagnostics sheet)

■ Communication diagnostics sheet

- If there is a problem with the communication connection with an external terminal, please check the settings in the sheet below.

Items	Cont	ents	Check		Remarks
System	How to connect the sy	ystem	OK	NG	1 Custom configuration
configuration	Connection cable nam	e	OK	NG	1. System configuration
TOP	Version information		OK	NG	
	Port in use		OK	NG	
	Driver name		OK	NG	
	Other detailed setting	S	OK	NG	
	Relative prefix	Project setting	OK	NG	
		Communication diagnostics	OK	NG	2. External device selection3. Communication setting
	Serial Parameter	Transmission Speed	OK	NG	
		Data Bit	OK	NG	
		Stop Bit	OK	NG	
		Parity Bit	OK	NG	
External device	CPU name	OK	NG		
	Communication port r	OK	NG		
	Protocol (mode)	OK	NG		
	Setup Prefix	OK	NG		
	Other detailed setting	OK	NG	A. Estamal de las autilias	
	Serial Parameter	Transmission Speed	OK	NG	4. External device setting
		Data Bit	OK	NG	
		Stop Bit	OK	NG	
		Parity Bit	OK	NG	
	Check address range			6. Supported addresses	
			OK	NG	(For details, please refer to the PLC vendor's manual.)

4. External device setting

Refer to the user manual of the external device to set "MODBUS Serial Slave Driver" in the external device I/F.

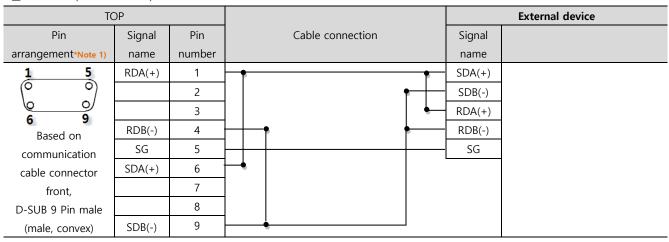
- Take caution when selecting RTU/ASCII mode in Protocol Frame format.
- Check the contents of the address map on the external device side and use the communication address according to its contents.

5. Cable table

This chapter introduces a cable diagram for normal communication between the TOP and the corresponding device. (The cable diagrams described in this section may differ from the external device vendor's recommendations.)

■ RS-232C (1:1 connection)

TOP					External device
Pin	Signal	Pin	Cable connection	Signal	
arrangement*Note 1)	name	number		name	
1 5	CD	1			
(° °)	RD	2		SD	
6 9	SD	3		RD	
Based on	DTR	4	•	DTR	
communication	SG	5		SG	
cable connector	DSR	6	├	DSR	
front,	RTS	7	•	RTS	
D-SUB 9 Pin male	CTS	8	<u> </u>	CTS	
(male, convex)		9			


^{*}Note 1) The pin arrangement is as seen from the connecting side of the cable connection connector.

■ RS-422 (1:1 connection)

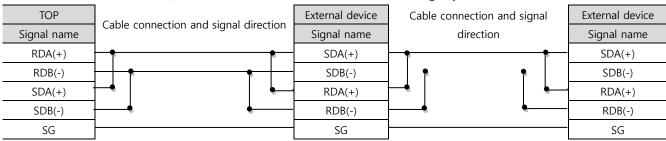
TOP				External device	
Pin	Signal	Pin	Cable connection	Signal	
arrangement*Note 1)	name	number		name	
1 5	RDA(+)	1		SDA(+)	
(° °)		2	•	SDB(-)	
6 9		3	•	RDA(+)	
Based on	RDB(-)	4	 	RDB(-)	
communication	SG	5		SG	
cable connector	SDA(+)	6	•		
front,		7			
D-SUB 9 Pin male		8			
(male, convex)	SDB(-)	9	•		

^{*}Note 1) The pin arrangement is as seen from the connecting side of the cable connection connector.

■ RS-485 (1:1 connection)

*Note 1) The pin arrangement is as seen from the connecting side of the cable connection connector.

Continued on next page.


■ **RS-485** (1:1 connection)

TOP				External device
Pin arrangement	Signal name	Cable connection	Signal name	
O SG - +	+ - SG		SDA(+) SDB(-) RDA(+) RDB(-) SG	

■ RS-422 (1:N connection) – Refer to 1:1 connection to connect in the following way.

TOP	Cable connection and signal direction	External device	Cable connection and signal	External device
Signal name	Cable connection and signal direction	Signal name	direction	Signal name
RDA(+)		SDA(+)		SDA(+)
RDB(-)		SDB(-)		SDB(-)
SDA(+)		RDA(+)		RDA(+)
SDB(-)		RDB(-)		RDB(-)
SG		SG		SG

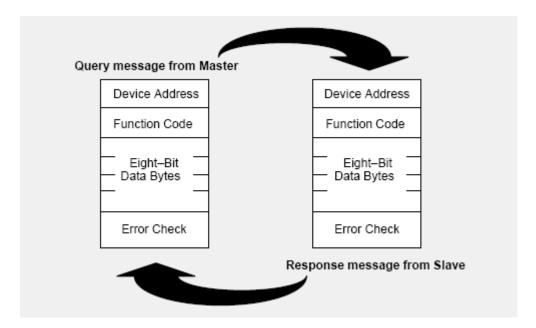
■ RS-485 (1:N/N:1 connection) – Refer to 1:1 connection to connect in the following way.

6. Supported addresses

The devices available in TOP are as follows:

The device range (address) may differ depending on the CPU module series/type. The TOP series supports the maximum address range used by the external device series. Please refer to each CPU module user manual and be take caution to not deviate from the address range supported by the device you want to use.

	Bit Address	Word Address	32 bits	Remarks
Coil	Q00001 – Q065536	Q00001 – Q65521		
Discrete Input	100001 – 165536	100001 – 165521	1.711	*Note 1)
Input Register	IW00001.00 – IW65536.15	IW00001 – IW65536	L/H	*Note 1)
Holding Register	MW00001.00 – MW65536.15	MW00001 – MW65536		

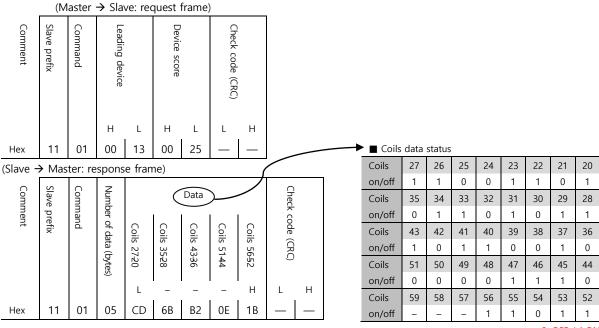

*Note 1) Cannot be written (Read-only)

Appendix A. Standard MODBUS Protocol

Describes MODBUS protocol commands and devices supported by "MODBUS Serial Master Driver" of this device.

At the message level, the MODBUS protocol still applies the master-slave principle even though the network communication method is peer-to-peer. If a controller originates a message, it does so as a master device, and expects a response from a slave device. Similarly, when a controller receives a message it constructs a slave response and returns it to the originating controller.

The Query: The function code in the query tells the addressed slave device what kind of action to perform. The data bytes contain any additional information that the slave will need to perform the function. For example, function code 03 will query the slave to read holding registers and respond with their contents. The data field must contain the information telling the slave which register to start at and how many registers to read. The error check field provides a method for the slave to validate the integrity of the message contents.


The Response: If the slave makes a normal response, the function code in the response is an echo of the function code in the query. The data bytes contain the data collected by the slave, such as register values or status. If an error occurs, the function code is modified to indicate that the response is an error response, and the data bytes contain a code that describes the error. The error check field allows the master to confirm that the message contents are valid.

Read Single Coil: 01

Describes "01" command frame through the example where " $\mathbf{0}$ 00020- $\mathbf{0}$ 00056 Coil" data of the Slave device side (prefix: 17) is read from the MASTER device.

■ RTU Mode

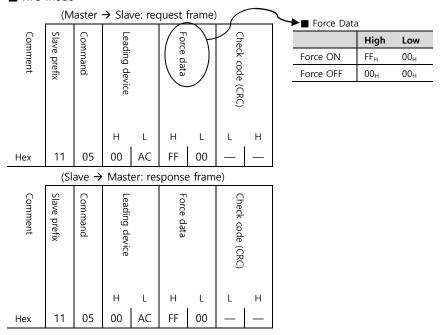
A.1

0: OFF / 1:ON

■ ASCII Mode

(Master \rightarrow Slave: request frame)

comment	Header	Slave prefix		Command		Leading device - L 0 0 1 3					Device score			Check code (LRC)		Tail	
		Н	L	Н	L	Н	-	-	L	Н	-	-	L	L	Н		
ASCII	:	1	1	0	1	0	0	1	3	0	0	2	5			CR	LF
Hex	3A	31	31	30	31	30	30	31	33	30	30	32	35	—	_	0D	0A


Comment	Header	Slave p		Comma		(bytes)	Number					Da	ta					Check		Tail		
ent		prefix		and			r of data	Coils 5652 Coils 5144 Coils 4336 Coils 3528 Coils 2720														
								Н	L	Н	L	Н	L	Н	L	Н	L	L	Н			
ASCII	:	1	1	0	1	0	5	С	D	6	В	В	2	0	E	1	В			CR	LF	
Hex	3A	31	31	30	31	30	35	43	44	36	42	42	32	30	45	31	42	_	_	0D	0A	

Force Single Coil: 05

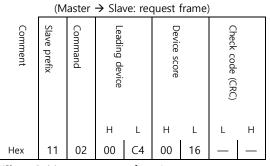
Describes "05" command frame through an example where FORCE "ON" is done on Coil 000173 of the Slave device side in the MASTER device.

■ RTU Mode

■ ASCII Mode

(Master → Slave: request frame)

					1	,											
comment	Header	Slave prefix		Command			Leading device				Force data			Check code (LRC)		Tail	
		Н	L	Н	L	Н	-	-	L	Н	-	-	L	L	Н		
ASCII	:	1	1	0	5	0	0	1	3	0	0	2	5			CR	LF
Hex	3A	31	31	30	31	30	30	41	43	45	45	30	30	_	_	0D	0A


comment	Header	Slave prefix		Command			Leading device				Force data			Check code (LRC)		Tail	:
		Н	L	Н	L	Н	-	-	L	Н	-	-	L	L	Н		
ASCII	:	1	1	0	5	0	0	1	3	0	0	2	5			CR	LF
Hex	3A	31	31	30	31	30	30	41	43	45	45	30	30	_	_	0D	0A

Read Input Status: 02

Describes "02" command frame through an example where "100197–100218 Input" data of the Slave device side (prefix: 17) is read from the MASTER device.

■ RTU Mode

A.2

(Slave -	Mas	ter: re	spons	e fran	ne)			
Comment	Slave prefix	Command	Number of		a (Inpu	1021840213	Check code (CRC)	
			data)197)205)213	L H	

+	► ■ Coils	data s	tatus						
	Coils	204	203	202	201	200	199	198	197
	on/off	1	0	1	0	1	1	0	0
	Coils	212	211	210	209	208	207	206	205
	on/off	1	1	0	1	1	0	1	1
	Coils	220	219	218	217	216	215	214	213

0

0: OFF / 1:ON

■ ASCII Mode

(Master → Slave: request frame)

	(aster			10.000												
comment	Header	Slave prefix		Command			Leading device				Device score			Check code (LRC)		Tail	
		Н	L	Н	L	Н	-	-	L	Н	-	-	L	L	Н		
ASCII	:	1	1	0	2	0	0	C	4	0	0	1	6			CR	LF
Hex	3A	31	31	30	32	30	30	43	34	30	30	31	36	_		0D	0A

Comment	Header	Slave p		Command		Number			I	Data (Ir	nputs)			Check		Tail		
ent	7	prefix		and		er of data (bytes)		1020440197		1021240205		1021840213		code (LRC)				
								Н	L	Н	L	Н	L	L	Н			
ASCII	:	1	1	0	2	0	3	Α	C	D	В	3	5			CR	LF	
Hex	3A	31	31	30	31	30	35	41	43	44	42	33	35	_	_	0D	0A	

Read Input Registers: 04

Describes "03" command frame through an example where "300009 Register" data of the Slave device side (prefix: 17) is read from the MASTER device.

■ RTU Mode

A.3

	(M	aster	→ Sla	ve: red	quest	frame))	
Comment	Slave prefix	Command	Leading device		(Word Count)	Device score	Check code (CRC)	
			Н	L	Н	L	L	Н
Hex	11	04	00	08	00	01	-	-
	(Sla	ave →	Mast	er: res	sponse	e fram	e)	
Comment	Slave prefix	Command	Number of data	Da 30009	ta Registe	Check code (CR		

■ ASCII Mode

(Master \rightarrow Slave: request frame)

comment	Header	Slave prefix		Command			Leading device					Device score		Check code (LRC)		Tail	:
		Н	L	Н	L	Н	-	-	L	Н	-	-	L	L	Н		
ASCII	:	1	1	0	1	0	0	0	8	0	0	0	1			CR	LF
Hex	3A	31	31	30	31	30	30	30	38	30	30	30	31		_	0D	0A

Comment	Header	Slave p		Command		(bytes)	Number		Da	ata		Check o		Tail	
tne		prefix		and			r of		40108	Register		code (LRC)			
							data			er.		Ő			
								Н	-	-	L	L	Н		
ASCII	:	1	1	0	4	0	2	0	0	0	Α			CR	LF
Hex	3A	31	31	30	31	30	35	30	30	30	41	_	_	0D	0A

Read Holding Registers: 03

Describes "03" command frame through an example where "400108 – 400110 Register" data of the Slave device side (prefix: 17) is read from the MASTER device.

■ RTU Mode

A.4

	(M	aster	→ Sla	ve: red	quest 1	frame))	
Comment	Slave prefix	Command	Leading device		Device score		Check code (CRC)	
			Н	L	Н	L	L	Н
łex	11	03	00	6B	00	03	_	_

(Slave)	Master:	response	frame)
---------------------	---------	----------	--------

Comment	Slave	Command	Numbe			Da	ta			Check	
ent	prefix	and	Number of data (bytes)	40108	Register	40109	Register	40110	Register	code (CRC)	
				Н	L	Н	L	Н	L	L	Н
Hex	11	03	06	02	2B	00	00	00	64	_	_

■ ASCII Mode

(Master \rightarrow Slave: request frame)

comment	Header	Slave prefix		Command			Leading device					Device score		Check code (LRC)		Tail	
		Н	L	Н	L	Н	_	_	L	Н	_	_	L	L	Н		
ASCII	:	1	1	0	1	0	0	1	3	0	0	2	5			CR	LF
Hex	3A	31	31	30	31	30	30	31	33	30	30	32	35	_	_	0D	0A

(Slave \rightarrow Master: response frame)

Comment	Header	Slave p		Comma	1	(bytes)	Number						D	ata						Check		Tail	
ent		pretix	,	ımand			r of		40108	Register			40109	Register			40110	Register		code (LRC)			
							data			7				7				7					
								Н	-	_	L	Н	-	_	L	Н	_	-	L	L	Н		
ASCII	:	1	1	0	3	0	6	0	2	2	В	0	0	0	0	0	0	6	4			CR	LF
Hex	3A	31	31	30	31	30	35	30	32	32	42	30	30	30	30	30	30	36	34	_	_	0D	0A

Preset Single Register: 06

Describes "06" command frame through an example where 00~03 (hex) data is entered in 400002 Register of the Slave device side .

■ RTU Mode

	(Master → Slave: request frame) Check code (CRC) Leading device H Comment														
Comment	Slave prefix	Command	Leading device		Preset data		Check code (CRC)								
			Н	L	Н	L	L	Н							
Hex	11	06	00	01	00	03	_	_							
	(SI	ave →	Mast	er: res	sponse	fram	e)								
Comment	Slave prefix	Command	Leading device		Preset data		Check code (CRC)								
			Н	L	Н	L	L	Н							
Hex	11	06	00	01	00	03		—							

■ ASCII Mode

(Master → Slave: request frame)

	,				1	,											
comment	Header	Slave prefix		Command			Leading device				Preset data			Check code (LRC)		Tail	
		Н	L	Н	L	Н	-	-	L	Н	-	-	L	L	Н		
ASCII	:	1	1	0	6	0	0	0	1	0	0	0	3			CR	LF
Hex	3A	31	31	30	36	30	30	30	31	30	30	30	33	_	_	0D	0A

omment	eader	ave prefix		ommand			eading device				reset data			heck code (LRC)		<u> </u>		
		Н	L	Н	L	Н	_	_	L	Н	-	-	L	L	Н			l
ASCII	:	1	1	0	6	0	0	0	1	0	0	0	3			CR	LF	
Hex	3A	31	31	30	36	30	30	30	31	30	30	30	33	_		0D	0A	

Preset Multiple Register: 10

Describes "10" command frame through an example where two consecutive data, "00 0A (hex)", "01 02 (hex)" are entered in 400002 Register of the Slave device side. (Error Code : 90_H)

■ RTU Mode

Comment	Slave	Command	Leading		(Word	Quantity	Number		Da	ta		Check	
nent	prefix	nand	ng device				per of	40002	Register	40003	Register	Check code (CRC)	
			е		(of Register	f data		er		er	CRC)	
			Н	L	Н	L		Н	L	Н	L	L	Н
Hex	11	10	00	01	00	02	04	00	0A	01	02	_	_

(Slave → Master: response frame)

Comment	Slave prefix	Command	Leading device		(Word Count)	Quantity of Register	Check code (CRC)	
			Н	L	Н	L	L	Н
Hex	11	10	00	01	00	02	_	_

■ ASCII Mode

(Master → Slave: request frame)

comment	Header	Slave					Leading				(Word	Quantity		(bytes)	Number				Da	ta			
nent	ler	prefix		mand			ing device				Cour	ntity of Register			ber of data		40002	Register			40003	Register	
		Н	L	Н	L	Н	_	_	L	Н	_	· _	L	_	ट ट	Н	_	_	L	Н	_	_	L
ASCII	:	1	1	1	0	0	0	0	1	0	0	0	2	0	4	0	0	0	Α	0	1	0	2
Hex	3A	31	31	31	30	30	30	41	43	30	30	30	32	30	34	30	30	30	41	30	31	30	32

Continue d...

Check code (LRC)

L H

ASCII CR LF

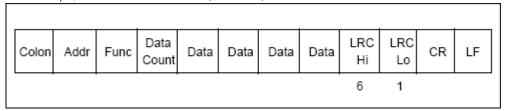
Hex — — 0D 0A

comment	Header	Slave prefix		Command		Leading device					≧	Quantity of Register		Check code (LRC)		Tail	
		Н	L	Н	L	Н	-	-	L	Н	-	-	L	L	Н		
ASCII	:	1	1	1	0	0	0	0	1	0	0	0	2			CR	LF
Hex	3A	31	31	30	31	30	30	30	31	30	30	30	32	_	_	0D	0A

(1) LRC Generation

The Longitudinal Redundancy Check (LRC) field is one byte, containing an 8-bit binary value. The LRC value is calculated by the transmitting device, which appends the LRC to the message. The receiving device recalculates an LRC during receipt of the message, and compares the calculated value to the actual value it received in the LRC field. If the two values are not equal, an error results.

The LRC is calculated by adding together successive 8-bit bytes in the message, discarding any carries, and then two's complementing the result. The LRC is an 8-bit field, therefore each new addition of a character that would result in a value higher than 255 decimal simply 'rolls over' the field's value through zero. Because there is no ninth bit, the carry is discarded automatically.


A procedure for generating an LRC is:

- Add all bytes in the message, excluding the starting 'colon' and ending
 CRLF. Add them into an 8-bit field, so that carries will be discarded.
 Subtract the final field value from FF hex (all 1's), to produce the ones-complement.
- 3. Add 1 to produce the twos-complement.

- Placing the LRC into the Message

When the 8-bit LRC (2 ASCII characters) is transmitted in the message, the high-order character will be transmitted first, followed by the low-order character.

For example, if the LRC value is 61 hex (0110 0001):

- Example

An example of a C language function performing LRC generation is shown below.

The function takes two arguments:

The function returns the LRC as a type unsigned char.

- LRC Generation Function

```
static unsigned char LRC(auchMsg, usDataLen)
unsigned char *auchMsg; /* message to calculate LRC upon */
unsigned short usDataLen; /* quantity of bytes in message */

{
    unsigned char uchLRC = 0; /* LRC char initialized */
    while (usDataLen—) /* pass through message buffer */
    uchLRC += *auchMsg++; /* add buffer byte without carry */
    return ((unsigned char)(-((char)uchLRC))); /* return twos complement */
}
```

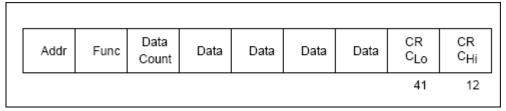

(2) CRC Generation

The Cyclical Redundancy Check (CRC) field is two bytes, containing a 16-bit binary value. The CRC value is calculated by the transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an error results.

The CRC is started by first preloading a 16-bit register to all 1's. Then a process begins of applying successive 8-bit bytes of the message to the current contents of the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits, and the parity bit, do not apply to the CRC.

During generation of the CRC, each 8-bit character is exclusive ORed with the register contents. Then the result is shifted in the direction of the least significant bit (LSB), with a zero filled into the most significant bit (MSB) position. The LSB is extracted and examined. If the LSB was a 1, the register is then exclusive ORed with a preset, fixed value. If the LSB was a 0, no exclusive OR takes place.

This process is repeated until eight shifts have been performed. After the last (eighth) shift, the next 8-bit character is exclusive ORed with the register's current value, and the process repeats for eight more shifts as described above. The final contents of the register, after all the characters of the message have been applied, is the CRC value.


A procedure for generating a CRC is:

- 1. Load a 16-bit register with FFFF hex (all 1's). Call this the CRC register.
- 2. Exclusive OR the first 8-bit byte of the message with the low-order byte of the 16-bit CRC register, putting the result in the CRC register.
- 3. Shift the CRC register one bit to the right (toward the LSB), zero-filling the MSB. Extract and examine the LSB.
- 4. (If the LSB was 0): Repeat Step 3 (another shift). (If the LSB was 1): Exclusive OR the CRC register with the polynomial value A001 hex (1010 0000 0000 0001).
- 5. Repeat Steps 3 and 4 until 8 shifts have been performed. When this is done, a complete 8-bit byte will have been processed.
- 6. Repeat Steps 2 through 5 for the next 8-bit byte of the message. Continue doing this until all bytes have been processed.
- 7. The final contents of the CRC register is the CRC value.
- 8. When the CRC is placed into the message, its upper and lower bytes must be swapped as described below.

- Placing the CRC into the Message

When the 16-bit CRC (two 8-bit bytes) is transmitted in the message, the low-order byte will be transmitted first, followed by the high-order byte.

For example, if the CRC value is 1241 hex (0001 0010 0100 0001):

- Example

An example of a C language function performing CRC generation is shown on the following pages. All of the possible CRC values are preloaded into two arrays, which are simply indexed as the function increments through the message buffer.

One array contains all of the 256 possible CRC values for the high byte of the 16-bit CRC field, and the other array contains all of the values for the low byte. Indexing the CRC in this way provides faster execution than would be achieved by calculating a new CRC value with each new character from the message buffer.

Note This function performs the swapping of the high/low CRC bytes internally. The bytes are already swapped in the CRC value that is returned from the function. Therefore the CRC value returned from the function can be directly placed into the message for transmission.

The function takes two arguments:

me ramemen takes two argamemes.	
unsigned char *puchMsg ;	//A pointer to the message buffer containing
	//binary data to be used for generating the CRC
unsigned short usDataLen;	//The quantity of bytes in the message buffer.

The function returns the CRC as a type unsigned short.

- CRC Generation Function

```
unsigned short CRC16(puchMsg, usDataLen)
unsigned char *puchMsg;
                                                /* message to calculate CRC upon */
unsigned short usDataLen;
                                                /* quantity of bytes in message */
   unsigned char uchCRCHi = 0xFF;
                                                /* high byte of CRC initialized */
   unsigned char uchCRCLo = 0xFF;
                                               /* low byte of CRC initialized */
   unsigned uIndex;
                                                /* will index into CRC lookup table */
   while (usDataLen-)
                                                /* pass through message buffer */
       uIndex = uchCRCHi ^ *puchMsgg++ ;
                                               /* calculate the CRC */
       uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex};
       uchCRCLo = auchCRCLo[uIndex] ;
   }
   return (uchCRCHi << 8 | uchCRCLo);
```

- High-Order Byte Table

Low-Order Byte Table

```
/* Table of CRC values for low—order byte */
static char auchCRCLo[] = {
    Ox00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD,
    Ox0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x0B, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A,
    Ox1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
    Ox11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4,
    Ox3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29,
    OxEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
    Ox22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67,
    OxA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68,
    Ox77, 0xB7, 0xB6, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBB, 0x71, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
    Ox96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x90, 0x50, 0x50, 0x90, 0x51, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
    Ox99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0xFF, 0x9F, 0x9F, 0x9F, 0x9F, 0x9B, 0x50, 0x40, 0x40, 0x40, 0x80, 0x40, 0x44, 0x84, 0x85, 0x45, 0x46, 0x4
```